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L E m R  TO THE EDITOR 

Exact transition temperature for an Ising model in 
three dimensions 

D Grensingt, A Hubert, H-U Juttnert, C Ruge? and M MunierS 
t Institut fur  Theoretische Physik, Universitat Kid ,  Olshausenstr. 40-60, D-2300 Kiel, 
Federal Republic of Germany 
$ lnstitut fur Theoretische Physik, Universitat Koln, Ziilpicher Str. 77, D-SO00 Koln, 
Federal Republic of Germany 

Received 26 March 1990 

Abstract. For the most general vertex model respecting spin-flip symmetry we obtain on 
two- and three-dimensional sc lattices all fixed points of the generalised weak-graph 
transformation. From the result, a phase transition of a constrained king model on a 
three-dimensional lattice is conjectured to occur at coupling strength a l n ( 4 + m i ) .  We 
find this value to be consistent with Monte Carlo simulation results, which indicate a 
first-order phase transition. 

We investigate a constrained Ising model (figure l),  with spins V E  {+l,  -1) situated 
at (the midpoints of) the bonds of a three-dimensional sc lattice. Euclidean metric is 
assumed; nearest-neighbour spins interact ferromagnetically with coupling strength 
K > 0. The constraint restricts every product of six spins surrounding a site to be 
positive. 

Figure 1. The six spins surrounding a site of the sc lattice in three dimensions. The bold 
line represents the interaction - K a , u 2 .  
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On simply connected lattices this constraint may be solved by passing to the dual 
sc lattice (this is an elementary result of algebraic topology, see e.g. [ l ]  in which the 
application to lattice models is emphasised). The spins, now being situated on faces 
(figure 2 ( a ) ) ,  are replaced by a set of new Ising spins on the bonds of this lattice, 
whose products along the boundary of each face give the value of the original face-spin. 
The remaining interaction couples the eight spins on the boundary of every two 
perpendicular faces having a common bond (effectively only six spins are coupled as 
one spin shows up twice in the product, figure 2( b ) ) .  For the remainder of our letter 
we shall, however, refer to the Ising version of the model. 

To locate a possible phase transition we look for fixed points of the (duality-like) 
generalised weak-graph transformation [2-41. In order to make this transformation 
applicable note that the constrained Ising model may be viewed as a vertex model on 
the (original) sc lattice with each site contributing a vertex weight w ( a , ,  . . . , aq) 
depending on the states of the q = 6 surrounding spins. Because only products of two 
or six spins emerge in the vertex weight it is symmetric with respect to flipping all 

[ b )  

Figure 2. ((I) An elementary cube of the dual lattice. Solid circles represent the original 
spins ut ,  u2, u3 (cf figure l ) ,  open circles the new spin-configuration, here denoted by T. 

The shaded square corresponds to uI = ~ , T ~ T ~ T ~ ,  which together with analogous relations 
for u2,. . . ,u6 solves the constraint of the original model ~,uzu3u,u,u6=+1. ( b )  An 
example of the remaining interaction - K u l u 2  = - K T , T ~ T , T ~ T , ~ , .  The spin T~ drops out as 
it occurs twice in this product. 
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spins: w ( - u I , .  . . , -uq) = w ( a l , .  . . , uq). In what follows the most general two-state 
vertex model symmetric in this sense will be studied on lattices of coordination numbers 
q = 4,6. 

The generalised weak-graph transformation is a mapping in parameter space 

w*(fli,..-~uq)= 1 v v 1 7 1 . . .  v o , , T , 1 6 - ' ( T ~ , . . . , T q )  (1) 
71 ...., TCJ 

which leaves the partition function of the vertex model invariant. The y-parametrised 
( 2 x 2 )  matrix 

exhibits eigenvectors 

z ,  = &JGj7- 1 
* I F  = (z:) ( 3 )  

corresponding to the eigenvalues E = +1 and E = -1 respectively: V$E = 
The generalised weak-graph transformation may be viewed as a tensor product 

W = V@. . .@ V ( q  factors) of V matrices. Every tensor product 9( E ) = +be, 0.  . .@ $ F q  

of eigenvectors of V belonging to eigenvalues E ~ ,  . . . , is an eigenvector of W 
corresponding to the eigenvalue A ( & )  = np,, E ~ .  Conversely these tensor products span 
the (two) eigenspaces of W. 

The space of vertex weight vectors w invariant under the weak-graph transformation 
is thus spanned by all eigenvectors * ( E )  belonging to the eigenvalue A ( E  ) = + 1. Because 
of the orthogonality property of the eigenvectors this space is equivalently characterised 
by the eigenvectors * ( E  ) with eigenvalue A ( E  ) = -1: 

* ( E )  * 0 = O  for all E with A ( & ) =  -1. (4) 

These 'normal vectors' will be used in the following to identify the space of fixed 
points for parameters y f 0. (The parameter value y = 0 yields a trivial mapping 
w * ( a l , .  . . , aq) = al . . . u,o(a,, . . . , uq), which leaves all vertex weight vectors 
invariant whose only non-vanishing elements are those with an even number of negative 
spin-arguments.) 

Before applying this technique to the study of the case of q = 6, we discuss it for 
the easier case of q = 4. Consider the general sixteen-vertex model without additional 
symmetry assumptions. There are eight normal vectors: four vectors corresponding to 
E E  E := {(-+++), (+-++), (++-+), (+++-)} and four corresponding to E with --E E 

E. It will be convenient to compose from these 4+4 normal vectors two new groups 
(of four vectors each) by 

P + ( E ) : = f ( * ( E ) + * ( - & ) )  ( 5 )  

The normal vectors Y+ and *- serve as the rows of a matrix representing a 
system of 4+4  homogeneous linear equations for the sixteen vertex weights. The 
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columns are indexed from left to right as (a , ,  . . a4)=(++++), (-+++), (+-++), 
(++-+I, (+++-I, (--++I, (-+-+I, (-++-), (+--+), (+-+-), (++--), (---+), 
(--+-) (-+--) (+----) 9 (----) 

Po+ P: P: P: p:-pO+ p: p:-po+-po+ p : - p : - p :  p: -p: -p:  

Po+ P: P: P: P: p:-pO+ p;-po+ p:-PO+-p: p : - p : - p : - p :  

Po: P: P: P: P:-Pot-po+ -Po' p: p: p: -p: -p: -p:  p.:-p: 

Po+ P: P: P: p:  p: p : - p ;  p:-po+-pO+ p:-p: -p: -p: -p:  
p 0 - p ;  P ;  P ;  p ; - p o - p o - p o  p2 p2 p ; - p ; - p ; - p ;  p ; - p ;  

Po PI -PI PI PF-PO p ;  p;-PO-PO p ; - p ; - p ;  p ; - p l  -p2 
PO P; P ; - P ;  p ;  p ; - p ;  p ; - p o  p ; - p i - p ;  p i - p ; - p ; - p ;  

Po PI PI P ; - P ;  p ;  p;-PO p ; - p ; - p ;  p ; - p ; - p ; - p ; - p ;  

* (7)  

- -  I - -  

_ _ _ _  

_ - _  

The polynomials in y constituting the matrix explicitly read 

P;=Y4 p ; = o  

p :  = -y3 P;=Y3 

2 
P: = ( Y 2 + 2 ) Y 2  

p: = - ( 3 y 2 + 4 ) y  

p ;  = -2y 

P ;  = ( Y 2 +  4)Y. 

The space of fixed points will in general be y dependent. But returning to the 
symmetric vertex model this dependence is seen to drop out. We respect the required 
spin-flip symmetry by adding columns located symmetrically to the centre. After 
ignoring non-vanishing factors ( y Z 0 )  common to the matrix elements of some row 
this yields the matrix 

- 1 P O O O  1 1  1 
- 1 0  P O  0 1 [ : ; ; ; : : i ;  - 1 0  0 Q O  1; 
- 1 0  0 0 Q 1  1 

(9) 

where P = (p:+p:) / (p:  - p i )  = -2(y2+ l ) / y  and Q = ( p ;  - p ; ) / ( p Y  - p i )  = -2 /y .  
After subtracting the first four equations from the last four these read 

U(-+++) =U(+---) = 0 w(+-++)  = w ( - + - - )  = o  
w ( + + - + ) = U ( - - + - ) = O  lo(+++-) =U(---+) = o  (10) 

the first equalities expressing the spin-flip symmetry. The remaining four equations all 
read 
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where the Baxter-like definitions 

a =U(++++)  = U ( - - - - )  c = U ( - + - + )  = U(+-+ - )  

(12) 
b = U ( - + + - )  = U ( + - - + )  d = O J ( - - + + )  = U ( + + - - )  

were used. 
Thus for spin-flip symmetric (q = 4)-vertex models the space of fixed points becomes 

independent of y as anticipated, and coincides with a hyperplane of phase transition 
points of the zero-field eight-vertex model [ 5 ] .  

We now turn to the case of (q  = 6)-vertex models respecting spin-flip symmetry 
(this includes the constrained Ising model). The vertex weights will be denoted as 

a =U(++++++) = U ( - - - - - - )  

b ,  =U(-+++++) = U(+- - - - - )  

b2 =U(+-++++) = o(-+----)  

b3 =U(++-+++) = U ( - - + - - - )  

b4 = w(+++-++)  = U( - - -+ - - )  

bs =U(++++-+) = U( - - - -+ - )  

c,o = U(++- -++)  = U( - -++ - - )  

c,, = U(++-+-+)  = U( - -+ -+ - )  

c12 =U(++-++- )  = U ( - - + - - + )  

c,3 = U(+++- -+)  = U ( - - - + + - )  

c14 = U(+++-+- )  = w ( - - - + - + )  

CIS =U(++++- - )  = U( - - - -++ )  

b6 =U(+++++-) = U ( - - - - - + )  

c, =U( - -++++)  = U(++- - - - )  

c2 = C O ( - + - + + + )  = U ( + - + - - - )  

c3 = U(-++-++) = w ( + - - + - - )  

c4 = U ( - + + + - + )  = U ( + - - - + - )  

c g  = U ( - + + + + - )  = U ( + - - - - + )  

C6 = U(+- -+++)  = U ( - + + - - - )  

c7 =U(+-+-++)  = U( -+ -+ - - )  

c g  = U ( + - + + - + )  = U( -+ - -+ - )  

d ,  = U ( - - - + + + )  = U(+++-- - )  

d2 = w(- -+ -++)  = U(++-+ - - )  

d3 =U( - -++ -+ )  = U(++- -+ - )  

d4 = U ( - - + + + - )  = w(++- - -+ )  

d5 = U ( - + - - + + )  = w(+-++- - )  

d6 = U( -+ -+ -+ )  = w(+-+ -+ - )  

d7 = U(-+-++-)  = U(+-+--+)  

ds = w(-++- -+ )  = U ( + - - + + - )  

dg =U( -++-+ - )  = CO(+--+-+) 

(13) 

cg =U(+-+++- )  = U( -+ - - -+ )  dlo= U ( - + + + - - )  = U(+- - -++) .  

As in (7) we construct a matrix whose rows *+, T span the orthocomplement to the 
A = +1 eigenspace. When treated analogously to the case of q = 4, it breaks up into 
two submatrices which coupled weights of 

(i) type a and type c, 
(ii) type b and type d, 

respectively. Among the equations ( i )  there are only six independent ones, which we 
choose to be 

a = cs + c9 + CIZ + C14 + CIS 
O =  CI + cS+ ~ 9 -  c I O - C I I  ~ ~ 1 3  
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Equations (i i)  reduce to 

( Y  - 5) b, = 0 

so that, for non-negative vertex weights, all weights with an odd number of equal 
spin-arguments have to vanish just as in the case of q = 4. The remaining sixteen 
weights of the spin-flip symmetric 64-vertex model are constrained by (14) to a 
ten-dimensional manifold of fixed points. 

This general result is now applied to the constrained Ising ferromagnet introduced 
at the beginning of our letter. Its non-vanishing vertex weights are 

a = exp(l2K) 

c ~ = ~ 2 = c j = c ~ = c ~ = ~ ~ = c 9 = ~ ~ ~  =cl2=cI3=c14=c1s= 1 (16) 
c5 = c8 = cl0 = exp( -4K). 

Fixed points under the generalised weak-graph transformation for this model have to 
satisfy (14) which in this case reduces to 

exp( 12K) = 4+  exp( -4K) (17) 
the only real solution of which is 

K f = ~ l n ( ~ + ~ ) = 0 . 1 2 7 1 9 3 6 7 ,  . .  . 

. - - a '  

K 
0 

ti l5 

, m m  

1_ 
0.15 

Figure 3. Monte Carlo simulation results of the constrained Ising model. The observables 
shown, plotted against the coupling strength, are ( a )  the nearest-neighbour spin correlation 
(which is proportional to the internal energy) and ( b )  the magnetisation per spin. The fine 
vertical line is the location of the coupling strength K,, obtained exactly in this letter. The 
results indicate a first-order phase transition at this point. 
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Using standard arguments for fixed points of duality-like transformations we 
conjecture this value to be the exact location of the phase transition for this model if 
it exhibits one and only one transition. The results of a (preliminary) Monte Carlo 
simulation we performed for the constrained Ising model strongly support this conjec- 
ture. The internal energy and the magnetisation (normalised to the interval [0, I]) both 
seem to have a discontinuity at the expected coupling strength K, (figure 3). Thus the 
constrained Ising model undergoes a first-order phase transition at this point. 

Finally we show that (14), (15) describe a manifold of phase transitions for a 
different case, too. The ( q  = 6)-vertex model with spin-flip symmetry may be interpreted 
as a ferroelectric model by the usual transition of terminology from bond spins to 
arrows on bonds representing electric dipoles. We generalise the ice-rule to the case 
of q = 6 by allowing only vertex configurations with exactly three in-going arrows. 
Thus all vertices of type b and d vanish (i.e. (15) is satisfied) and, in addition, 

(19) Cl = c* = cg = c13 = c14 = Cl5 = 0. 

If we associate an energy E (i.e. a weight exp(-PE)) with the remaining vertices 
14) yields for this of type c and zero energy (weight 1) with vertices of type a, then 

model one fixed point at 

&E =In 3. 

That there is indeed a first-order phase transition at this poin can be shown by 
extending a proof by Nagle [6] from q = 4 to q = 6 [7]. Thus, in the sector of vertex 
weights specified above our assumption that phase transition points will be fixed points 
of the generalised weak-graph transformation, has been explicitly verified. 
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